ГЕМОДИАЛИЗ-ИНДУЦИРОВАННОЕ СНИЖЕНИЕ УРОВНЯ ГЛУТА- МАТА В КРОВИ ПРИ ХРОНИЧЕСКОЙ ПОЧЕЧНОЙ НЕДОСТАТОЧНО- СТИ: ПОТЕНЦИАЛЬНАЯ РЕАЛИЗАЦИЯ НЕЙРОПРОТЕКЦИИ
Ключові слова:
травма головного мозга; глутамат; глутаматная оксалоацетатная трансаминаза (GOT); глутаматпируват-трансаминаза (GPT); гемодиализАнотація
Цель. Целью работы является исследование возможности гемодиализа (HD) быть эффективным в снижении уровня глютамата в крови. Кроме того, изучали влияние HD на уровни глутамата оксалоацетатной трансаминазы (GOT) и глутаматпируват-трансаминазы (GPT) в крови и описывали скорость и структуру клиренса глутамата в крови во время HD. Материал и методы. Образцы крови были взяты у 45 пациентов с хроническим заболеванием почек V стадии сразу после начала HD с почасовым контролем в течение 5 ч. Образцы были отправлены для определения уровней глутамата, глюкозы, GOT, GPT, гемоглобина, гематокрита, мочевины и креатинина. Образец крови от 25 здоровых добровольцев без хронической почечной недостаточности использовался в качестве контроля для определения исходных уровней глутамата в крови, GOT и GPT. Результаты. Содержание глутамата и GPT у пациентов с HD было выше на исходном уровне по сравнению со здоровым контролем (p<0,001). В первые 3 ч после HD наблюдалось снижение содержания глутамата в крови по сравнению с исходными уровнями (p<0,00001). На 4-й час наблюдалось увеличение уровня глутамата в крови по сравнению с 3-м часом (p<0,05). Выводы. HD может быть многообещающим методом снижения уровня глутамата в крови.
Посилання
Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke / J. Castillo, A. Davalos, J. Naveiro [et al.] // Stroke. – 1996. – № 27. – Р. 1060–1065.
Progression of ischaemic stroke and excitotoxic aminoacids / J. Castillo, A. Davalos, M. Noya // Lancet. – 1997. – № 349. – Р. 79–83.
Neurobiology of hypoxic-ischemic injury in the developing brain / M. V. Johnston, W. H. Trescher, A. Ishida [et al.] // Pediatr Res. – 2001. – № 49. – Р. 735–741.
Glutamate release and cerebral blood flow after severe human head injury / A. Zauner, R. Bullock, A. J. Kuta [et al.] // Acta Neurochir Suppl. – 1996. – № 667. – Р. 40–44.
High blood glutamate oxaloacetate transaminase levels are associated with good functional outcome in acute ischemic stroke / F. Campos, T. Sobrino, P. Ramos-Cabrer [et al.] // J Cereb Blood Flow Metab. – 2011. – Vol. 31 (6). – P. 1387–1393.
Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study / F. Campos, T. Sobrino, P. Ramos-Cabrer [et al.] // J Cereb Blood Flow Metab. – 2011. – № 31 (6). – Р. 1378–1386.
Blood levels of glutamate oxaloacetate transaminase are stronger associated with good outcome in acute ishcemic stroke than glutamate pyruvate transaminase / F. Campos, M. Rodriguez-Yanez, M. Castellanos [et al.] // Clin Sci (Lond). – 2011. – № 121 (1). – Р. 11–17.
The Yin and Yang of NMDA receptor signalling / G. E. Hardingham, H. Bading // Trends Neurosci. – 2003. – № 26. – Р. 81–89.
Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? / C. Ikonomidou, L. Turski // Lancet Neurol. – 2002. – № 21. – Р. 383–386.
Neurological deterioration as a potential alternative endpoint in human clinical trials of experimental pharmacological agents for treatment of severe traumatic brain injuries. Executive Committee of the International Selfotel Trial / G. F. Morris, N. Juul, S. B. Marshall [et al.] //Neurosurgery. – 1999. – № 843. – Р. 1369–1372.
Clinical experience with excitatory amino acid antagonist drugs / K. W. Muir, K. R. Lees // Stroke. – 1995. – № 26. – Р. 503–513.
Muir K. W. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists / K. W. Muir // Curr Opin Pharmacol. – 2006. – № 6. – Р. 53–60.
Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the bloodbrain barrier. A mechanism for glutamate removal / R. L. O’Kane, I. Martinez-Lopez, M. R. DeJoseph [et al.] // J Biol Chem. – 1999. – № 274. – Р. 31891–31895.
Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies / V. I. Teichberg, K. Cohen-Kashi-Malina, I. Cooper [et al.] // Neuroscience. – 2009. – № 158. – Р. 301–308.
Danbolt N. C. Glutamate uptake / N. C. Danbolt // Prog Neurobiol. – 2001. – № 65. – Р. 1–105.
Berl S. Amino acid and protein metabolism of the brain. VI. Cerebral compartments of glutamic acid metabolism / S. Berl, A. Lajtha, H. Waelsch // J Neurochem. – 1961. – № 7. – Р. 186–197.
Metabolic compartments in vivo. Ammonia and glutamic acid metabolism in brain and liver / S. Berl, G. Takagaki, D. D. Clarke [et al.] // J Biol Chem. – 1962. – № 237. – Р. 2562–2569.
Gottlieb M. Blood-mediated scavenging of cerebrospinal fluid glutamate / M. Gottlieb, Y. Wang, V. I. Teichberg // J Neurochem. – 2003. – № 87. – Р. 119–126.
The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity: evidence from the use of maleate / A. Zlotnik, S. E. Gruenbaum, A. A. Artru [et al.] // J Neurosurg Anesthesiol. – 2009. – № 21. – Р. 235–241.
The contribution of the blood glutamate scavenging activity of pyruvate to its neuroprotective properties in a rat model of closed head injury / A. Zlotnik, B. Gurevich, E. Cherniavsky [et al.] // Neurochem Res. – 2008. – № 33. – Р. 1044–1050.
Brain neuroprotection by scavenging blood glutamate / A. Zlotnik, B. Gurevich, S. Tkachov [et al.] // Exp Neurol. – 2007. – № 203. – Р. 213–220.
The contribution of the blood glutamate scavenging activity of pyruvate to its neuroprotective properties in a rat model of closed head injury / A. Zlotnik, B. Gurevich, E. Cherniavsky [et al.] // Neurochem Res. – 2008. – № 33. – Р. 1044–1050.
Fluorometric determination of aspartate, glutamate, and gamma-aminobutyrate in nerve tissue using enzymic methods / L. T. Graham, M. H. Aprison // Anal Biochem. – 1966. – № 15. – Р. 487–497.
The Effects of Estrogen and Progesterone on Blood Glutamate Levels: Evidence from Changes of Blood Glutamate Levels During the Menstrual Cycle in Women / A. Zlotnik, B. F. Gruenbaum, B. Mohar [et al.] // Biol Reprod. – 2011. – № 84 (3). – Р. 581–586.
The Activation of beta2-Adrenergic Receptors in Naive Rats Causes a Reduction of Blood Glutamate Levels: Relevance to Stress and Neuroprotection / A. Zlotnik, Y. Klin, B. F. Gruenbaum [et al.] // Neurochem Res. – 2011. – № 36 (5). – Р. 732–738.
Different Kinds of Stress Decrease Blood Glutamate Levels in Rats / A. Zlotnik, S. Ohayon, A. A. Artru [et al.] // American Society of Anesthesiologists Annual Meeting, Orlando, FL, USA, 2008.
Free aminoacid levels simultaneously collected in plasma, muscle, and erythrocytes of uraemic patients / J. C. Divino Filho, P. Barany, P. Stehle [et al.] // Nephrol Dial Transplant. – 1997. – № 12. – Р. 2339–2348.
Amino acid and albumin losses during hemodialysis / T. A. Ikizler, P. J. Flakoll, R. A. Parker [et al.] // Kidney Int. – 1994. – № 46. – Р. 830–837.
Dialysis modality-dependent changes in serum metabolites: accumulation of inosine and hypoxanthine in patients on haemodialysis / J. Y. Choi, Y. J. Yoon, H. J. Choi [et al.] // Nephrol Dial Transplant. – 2011. – № 26 (4). – Р. 1304–1313.
Glutamate concentration in plasma, erythrocyte and muscle in relation to plasma levels of insulin-like growth factor (IGF)-I, IGF binding protein-1 and insulin in patients on haemodialysis / J. C. Divino Filho, S. J. Hazel, P. Furst [et al.] // J Endocrinol. – 1998. – № 156. – Р. 519–527.
Amino acid losses during CAPD / C. Giordano, N. G. De Santo, G. Capodicasa [et al.] // Clin Nephrol. – 1980. – № 14. – Р. 230–232.
Plasma amino acid levels and amino acid losses during continuous ambulatory peritoneal dialysis / J. D. Kopple, M. J. Blumenkrantz, M. R. Jones [et al.] // Am J Clin Nutr. – 1982. – № 36. – P. 395–402.
Amino acid losses during hemodialysis with infusion of amino acids and glucose / M. Wolfson, M. R. Jones, J. D. Kopple // Kidney Int. – 1982. – № 21. – Р. 500–506.
The effect of dialysis membrane flux on amino acid loss in hemodialysis patients / H. W. Gil, J. O. Yang, E. Y. Lee [et al.] // J Korean Med Sci. – 2007. – № 22. – Р. 598–603.
Protein catabolic factors in patients on renal replacement therapy / J. Bergstrom // Adv Exp Med Biol. – 1989. – № 260. – Р. 1–9.
Urea rebound and delivered Kt/V determination with a continuous urea sensor / L. J. Garred, B. Canaud, J. Y. Bosc [et al.] // Nephrol Dial Transplant. – 1997. – № 12. – Р. 535–542.
Measurement of blood urea concentration during haemodialysis is not an accurate method to determine equilibrated post-dialysis urea concentration / M. C. Castro, J. E. Romao, Jr., M. Marcondes // Nephrol Dial Transplant. – 2001. – № 16. – Р. 1814–1817.
Rapid (24-hour) reaccumulation of brain organic osmolytes (particularly myo-inositol) in azotemic rats after correction of chronic hyponatremia / A. Soupart, S. Silver, B. Schrooeder [et al.] // J Am Soc Nephrol. – 2002. – № 13. – Р. 1433–1441.
Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli / D. McLaggan, J. Naprstek, E. T. Buurman [et al.] // J Biol Chem. – 1994. – № 269. – P. 1911–1917.
Observations on decreased serum glutamic oxalacetic transaminase (SGOT) activity in azotemic patients / G. A. Cohen, J. A. Goffinet, R. K. Donabedian [et al.] // Ann Intern Med. – 1976. – № 84. – Р. 275–280.
Effects of in vivo and in vitro dialysis on plasma transaminase activity / D. R. Crawford, R. S. Reyna, M. W. Weiner // Nephron. – 1978. – № 22. – Р. 418–422.
An experimental model of focal ischemia using an internal carotid artery approach / M. Boyko, A. Zlotnik, B. F. Gruenbaum [et al.] // Journal of neuroscience methods. – 2010. – № 193. – Р. 246–253.
Determination of factors affecting glutamate concentrations in the whole blood of healthy human volunteers / A. Zlotnik, S. Ohayon, B. F. Gruenbaum [et al.] // J Neurosurg Anesthesiol. – 2011. – № 23. – Р. 45–49.
Distribution of Blood Glutamate into Peripheral Tissues by Radiolabeled Technique / A. Zlotnik, E. S. Gruenbaum, A. A. Artru [et al.] // American Society of Anesthesiologists Annual Meeting. New-Orleans, LA, USA, 2009.
The effects of estrogen and progesterone on blood glutamate levels: evidence from changes of blood glutamate levels during the menstrual cycle in women / A. Zlotnik, B. F. Gruenbaum, B. Mohar [et al.] // Biol Reprod. – 2011. – № 84. – Р. 581–586.
Pyruvate’s blood glutamate scavenging activity contributes to the spectrum of its neuroprotective mechanisms in a rat model of stroke / M. Boyko, A. Zlotnik, B. F. Gruenbaum [et al.] / / The European journal of neuroscience. – 2011. – № 34. – Р. 1432–1441.
Regulation of blood L-glutamate levels by stress as a possible brain defense mechanism / A. Zlotnik, Y. Klin, R. Kotz [et al.] // Exp Neurol. – 2010. – № 224. – Р. 465–471.
Homeostasis of glutamate in brain fluids: An accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies / V. I. Teichberg, K. Cohen-Kashi-Malina, I. Cooper [et al.] // Neuroscience. – 2008. – № 02. – Р. 075.
Effect of Glutamate and Blood Glutamate Scavengers Oxaloacetate and Pyruvate on Neurological Outcome and Pathohistology of the Hippocampus after Traumatic Brain Injury in Rats / A. Zlotnik, I. Sinelnikov, M. Dubilet [et al.] // Anesthesiology In press. – 2011. – № 02. – Р. 075.
The activation of beta2-adrenergic receptors in naive rats causes a reduction of blood glutamate levels: relevance to stress and neuroprotection / A. Zlotnik, Y. Klin, B. F. Gruenbaum [et al.] // Neurochem Res. – 2011. – № 36. – Р. 732–738.
Effect of estrogens on blood glutamate levels in relation to neurological outcome after TBI in male rats / A. Zlotnik, A. Leibowitz, B. Gurevich [et al.] // Intensive Care Med. – 2012. – № 38. – Р. 137–144.
Effects of blood glutamate scavenging on cortical evoked potentials / D. Nagy, L. Knapp, M. Marosi [et al.] // Cell Mol Neurobiol. – 2010. – № 30. – Р. 1101–1106.
Oxaloacetate restores the long-term potentiation impaired in rat hippocampus CA1 region by 2-vessel occlusion / M. Marosi, J. Fuzik, D. Nagy [et al.] // Eur J Pharmacol. – 2009. – № 604. – Р. 51–57.
Recurrent circulatory stress: the dark side of dialysis / C. W. McIntyre // Semin Dial. – 2010. – № 23. – Р. 449–451.
Relation of serum albumin and C-reactive protein to hypotensive episodes during hemodialysis sessions / J. Saudi, M. Pakfetrat, J. Roozbeh [et al.] // Kidney Dis Transpl. – 2010. – № 21. – Р. 707–711.
Dialysis induced hypotension — a serious clinical problem in renal replacement therapy / W. Sulowicz, A. Radziszewski // Med Pregl. – 2007. – Suppl. 60. – № 2. – Р. 14–20.