THE HEMODIALYSIS INDUCED BLOOD GLUTAMATE REDUCTION IN CHRONIC RENAL FAILURE: POTENTIAL IMPLEMENTATION FOR NEUROPROTECTION

Authors

  • Michael Dubilet MD
  • Ruslan Kuts MD
  • Matthew Boyko, PhD
  • Dmitry Natanel MD
  • Dmitry Frank MD
  • Alexander Zlotnik, MD, PhD

Keywords:

brain injury; glutamate; glutamate oxaloacetate transaminase (GOT); glutamate pyruvate transaminase (GPT); hemodialysis

Abstract

Purpose. The purpose of the present study is to investigate whether hemodialysis (HD) may be effective in lowering blood glutamate levels. Additionally, we examined the effect of HD on glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) levels in the blood and describe the rate and pattern of blood glutamate clearance during HD. Material and methods. Blood samples were taken from 45 patients with stage V chronic kidney disease immediately after initiation of HD, and hourly for a total of 5 blood samples. Samples were sent for determination of glutamate, glucose, GOT, GPT, hemoglobin, hematocrit, urea and creatinine levels. A blood sample from 25 healthy volunteers without chronic renal failure was used as a control for the determination of baseline blood levels of glutamate, GOT and GPT. Results. Glutamate levels and GPT levels in patients on HD were higher at baseline compared with healthy controls (p<0.001). In the first 3 hours after HD, there was a decrease in blood glutamate levels compared with baseline levels (p<0.00001). At the 4th hour, there was an increase in blood glutamate levels compared with the 3rd hour (p<0.05). Conclusions. HD may be a promising method of reducing blood glutamate levels.

References

Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke / J. Castillo, A. Davalos, J. Naveiro [et al.] // Stroke. – 1996. – № 27. – Р. 1060–1065.

Progression of ischaemic stroke and excitotoxic aminoacids / J. Castillo, A. Davalos, M. Noya // Lancet. – 1997. – № 349. – Р. 79–83.

Neurobiology of hypoxic-ischemic injury in the developing brain / M. V. Johnston, W. H. Trescher, A. Ishida [et al.] // Pediatr Res. – 2001. – № 49. – Р. 735–741.

Glutamate release and cerebral blood flow after severe human head injury / A. Zauner, R. Bullock, A. J. Kuta [et al.] // Acta Neurochir Suppl. – 1996. – № 667. – Р. 40–44.

High blood glutamate oxaloacetate transaminase levels are associated with good functional outcome in acute ischemic stroke / F. Campos, T. Sobrino, P. Ramos-Cabrer [et al.] // J Cereb Blood Flow Metab. – 2011. – Vol. 31 (6). – P. 1387–1393.

Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study / F. Campos, T. Sobrino, P. Ramos-Cabrer [et al.] // J Cereb Blood Flow Metab. – 2011. – № 31 (6). – Р. 1378–1386.

Blood levels of glutamate oxaloacetate transaminase are stronger associated with good outcome in acute ishcemic stroke than glutamate pyruvate transaminase / F. Campos, M. Rodriguez-Yanez, M. Castellanos [et al.] // Clin Sci (Lond). – 2011. – № 121 (1). – Р. 11–17.

The Yin and Yang of NMDA receptor signalling / G. E. Hardingham, H. Bading // Trends Neurosci. – 2003. – № 26. – Р. 81–89.

Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? / C. Ikonomidou, L. Turski // Lancet Neurol. – 2002. – № 21. – Р. 383–386.

Neurological deterioration as a potential alternative endpoint in human clinical trials of experimental pharmacological agents for treatment of severe traumatic brain injuries. Executive Committee of the International Selfotel Trial / G. F. Morris, N. Juul, S. B. Marshall [et al.] //Neurosurgery. – 1999. – № 843. – Р. 1369–1372.

Clinical experience with excitatory amino acid antagonist drugs / K. W. Muir, K. R. Lees // Stroke. – 1995. – № 26. – Р. 503–513.

Muir K. W. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists / K. W. Muir // Curr Opin Pharmacol. – 2006. – № 6. – Р. 53–60.

Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the bloodbrain barrier. A mechanism for glutamate removal / R. L. O’Kane, I. Martinez-Lopez, M. R. DeJoseph [et al.] // J Biol Chem. – 1999. – № 274. – Р. 31891–31895.

Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies / V. I. Teichberg, K. Cohen-Kashi-Malina, I. Cooper [et al.] // Neuroscience. – 2009. – № 158. – Р. 301–308.

Danbolt N. C. Glutamate uptake / N. C. Danbolt // Prog Neurobiol. – 2001. – № 65. – Р. 1–105.

Berl S. Amino acid and protein metabolism of the brain. VI. Cerebral compartments of glutamic acid metabolism / S. Berl, A. Lajtha, H. Waelsch // J Neurochem. – 1961. – № 7. – Р. 186–197.

Metabolic compartments in vivo. Ammonia and glutamic acid metabolism in brain and liver / S. Berl, G. Takagaki, D. D. Clarke [et al.] // J Biol Chem. – 1962. – № 237. – Р. 2562–2569.

Gottlieb M. Blood-mediated scavenging of cerebrospinal fluid glutamate / M. Gottlieb, Y. Wang, V. I. Teichberg // J Neurochem. – 2003. – № 87. – Р. 119–126.

The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity: evidence from the use of maleate / A. Zlotnik, S. E. Gruenbaum, A. A. Artru [et al.] // J Neurosurg Anesthesiol. – 2009. – № 21. – Р. 235–241.

The contribution of the blood glutamate scavenging activity of pyruvate to its neuroprotective properties in a rat model of closed head injury / A. Zlotnik, B. Gurevich, E. Cherniavsky [et al.] // Neurochem Res. – 2008. – № 33. – Р. 1044–1050.

Brain neuroprotection by scavenging blood glutamate / A. Zlotnik, B. Gurevich, S. Tkachov [et al.] // Exp Neurol. – 2007. – № 203. – Р. 213–220.

The contribution of the blood glutamate scavenging activity of pyruvate to its neuroprotective properties in a rat model of closed head injury / A. Zlotnik, B. Gurevich, E. Cherniavsky [et al.] // Neurochem Res. – 2008. – № 33. – Р. 1044–1050.

Fluorometric determination of aspartate, glutamate, and gamma-aminobutyrate in nerve tissue using enzymic methods / L. T. Graham, M. H. Aprison // Anal Biochem. – 1966. – № 15. – Р. 487–497.

The Effects of Estrogen and Progesterone on Blood Glutamate Levels: Evidence from Changes of Blood Glutamate Levels During the Menstrual Cycle in Women / A. Zlotnik, B. F. Gruenbaum, B. Mohar [et al.] // Biol Reprod. – 2011. – № 84 (3). – Р. 581–586.

The Activation of beta2-Adrenergic Receptors in Naive Rats Causes a Reduction of Blood Glutamate Levels: Relevance to Stress and Neuroprotection / A. Zlotnik, Y. Klin, B. F. Gruenbaum [et al.] // Neurochem Res. – 2011. – № 36 (5). – Р. 732–738.

Different Kinds of Stress Decrease Blood Glutamate Levels in Rats / A. Zlotnik, S. Ohayon, A. A. Artru [et al.] // American Society of Anesthesiologists Annual Meeting, Orlando, FL, USA, 2008.

Free aminoacid levels simultaneously collected in plasma, muscle, and erythrocytes of uraemic patients / J. C. Divino Filho, P. Barany, P. Stehle [et al.] // Nephrol Dial Transplant. – 1997. – № 12. – Р. 2339–2348.

Amino acid and albumin losses during hemodialysis / T. A. Ikizler, P. J. Flakoll, R. A. Parker [et al.] // Kidney Int. – 1994. – № 46. – Р. 830–837.

Dialysis modality-dependent changes in serum metabolites: accumulation of inosine and hypoxanthine in patients on haemodialysis / J. Y. Choi, Y. J. Yoon, H. J. Choi [et al.] // Nephrol Dial Transplant. – 2011. – № 26 (4). – Р. 1304–1313.

Glutamate concentration in plasma, erythrocyte and muscle in relation to plasma levels of insulin-like growth factor (IGF)-I, IGF binding protein-1 and insulin in patients on haemodialysis / J. C. Divino Filho, S. J. Hazel, P. Furst [et al.] // J Endocrinol. – 1998. – № 156. – Р. 519–527.

Amino acid losses during CAPD / C. Giordano, N. G. De Santo, G. Capodicasa [et al.] // Clin Nephrol. – 1980. – № 14. – Р. 230–232.

Plasma amino acid levels and amino acid losses during continuous ambulatory peritoneal dialysis / J. D. Kopple, M. J. Blumenkrantz, M. R. Jones [et al.] // Am J Clin Nutr. – 1982. – № 36. – P. 395–402.

Amino acid losses during hemodialysis with infusion of amino acids and glucose / M. Wolfson, M. R. Jones, J. D. Kopple // Kidney Int. – 1982. – № 21. – Р. 500–506.

The effect of dialysis membrane flux on amino acid loss in hemodialysis patients / H. W. Gil, J. O. Yang, E. Y. Lee [et al.] // J Korean Med Sci. – 2007. – № 22. – Р. 598–603.

Protein catabolic factors in patients on renal replacement therapy / J. Bergstrom // Adv Exp Med Biol. – 1989. – № 260. – Р. 1–9.

Urea rebound and delivered Kt/V determination with a continuous urea sensor / L. J. Garred, B. Canaud, J. Y. Bosc [et al.] // Nephrol Dial Transplant. – 1997. – № 12. – Р. 535–542.

Measurement of blood urea concentration during haemodialysis is not an accurate method to determine equilibrated post-dialysis urea concentration / M. C. Castro, J. E. Romao, Jr., M. Marcondes // Nephrol Dial Transplant. – 2001. – № 16. – Р. 1814–1817.

Rapid (24-hour) reaccumulation of brain organic osmolytes (particularly myo-inositol) in azotemic rats after correction of chronic hyponatremia / A. Soupart, S. Silver, B. Schrooeder [et al.] // J Am Soc Nephrol. – 2002. – № 13. – Р. 1433–1441.

Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli / D. McLaggan, J. Naprstek, E. T. Buurman [et al.] // J Biol Chem. – 1994. – № 269. – P. 1911–1917.

Observations on decreased serum glutamic oxalacetic transaminase (SGOT) activity in azotemic patients / G. A. Cohen, J. A. Goffinet, R. K. Donabedian [et al.] // Ann Intern Med. – 1976. – № 84. – Р. 275–280.

Effects of in vivo and in vitro dialysis on plasma transaminase activity / D. R. Crawford, R. S. Reyna, M. W. Weiner // Nephron. – 1978. – № 22. – Р. 418–422.

An experimental model of focal ischemia using an internal carotid artery approach / M. Boyko, A. Zlotnik, B. F. Gruenbaum [et al.] // Journal of neuroscience methods. – 2010. – № 193. – Р. 246–253.

Determination of factors affecting glutamate concentrations in the whole blood of healthy human volunteers / A. Zlotnik, S. Ohayon, B. F. Gruenbaum [et al.] // J Neurosurg Anesthesiol. – 2011. – № 23. – Р. 45–49.

Distribution of Blood Glutamate into Peripheral Tissues by Radiolabeled Technique / A. Zlotnik, E. S. Gruenbaum, A. A. Artru [et al.] // American Society of Anesthesiologists Annual Meeting. New-Orleans, LA, USA, 2009.

The effects of estrogen and progesterone on blood glutamate levels: evidence from changes of blood glutamate levels during the menstrual cycle in women / A. Zlotnik, B. F. Gruenbaum, B. Mohar [et al.] // Biol Reprod. – 2011. – № 84. – Р. 581–586.

Pyruvate’s blood glutamate scavenging activity contributes to the spectrum of its neuroprotective mechanisms in a rat model of stroke / M. Boyko, A. Zlotnik, B. F. Gruenbaum [et al.] / / The European journal of neuroscience. – 2011. – № 34. – Р. 1432–1441.

Regulation of blood L-glutamate levels by stress as a possible brain defense mechanism / A. Zlotnik, Y. Klin, R. Kotz [et al.] // Exp Neurol. – 2010. – № 224. – Р. 465–471.

Homeostasis of glutamate in brain fluids: An accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies / V. I. Teichberg, K. Cohen-Kashi-Malina, I. Cooper [et al.] // Neuroscience. – 2008. – № 02. – Р. 075.

Effect of Glutamate and Blood Glutamate Scavengers Oxaloacetate and Pyruvate on Neurological Outcome and Pathohistology of the Hippocampus after Traumatic Brain Injury in Rats / A. Zlotnik, I. Sinelnikov, M. Dubilet [et al.] // Anesthesiology In press. – 2011. – № 02. – Р. 075.

The activation of beta2-adrenergic receptors in naive rats causes a reduction of blood glutamate levels: relevance to stress and neuroprotection / A. Zlotnik, Y. Klin, B. F. Gruenbaum [et al.] // Neurochem Res. – 2011. – № 36. – Р. 732–738.

Effect of estrogens on blood glutamate levels in relation to neurological outcome after TBI in male rats / A. Zlotnik, A. Leibowitz, B. Gurevich [et al.] // Intensive Care Med. – 2012. – № 38. – Р. 137–144.

Effects of blood glutamate scavenging on cortical evoked potentials / D. Nagy, L. Knapp, M. Marosi [et al.] // Cell Mol Neurobiol. – 2010. – № 30. – Р. 1101–1106.

Oxaloacetate restores the long-term potentiation impaired in rat hippocampus CA1 region by 2-vessel occlusion / M. Marosi, J. Fuzik, D. Nagy [et al.] // Eur J Pharmacol. – 2009. – № 604. – Р. 51–57.

Recurrent circulatory stress: the dark side of dialysis / C. W. McIntyre // Semin Dial. – 2010. – № 23. – Р. 449–451.

Relation of serum albumin and C-reactive protein to hypotensive episodes during hemodialysis sessions / J. Saudi, M. Pakfetrat, J. Roozbeh [et al.] // Kidney Dis Transpl. – 2010. – № 21. – Р. 707–711.

Dialysis induced hypotension — a serious clinical problem in renal replacement therapy / W. Sulowicz, A. Radziszewski // Med Pregl. – 2007. – Suppl. 60. – № 2. – Р. 14–20.

Downloads

Published

2022-02-14

How to Cite

Дубилет, М., Куц, Р., Бойко, М., Натанель, Д., Франк, Д., & Злотник, А. (2022). THE HEMODIALYSIS INDUCED BLOOD GLUTAMATE REDUCTION IN CHRONIC RENAL FAILURE: POTENTIAL IMPLEMENTATION FOR NEUROPROTECTION. Clinical Anesthesiology and Intensive Care, (2), 5–19. Retrieved from http://journals.ieu.kiev.ua/index.php/caic/article/view/271

Most read articles by the same author(s)