CONTINUOUS-WAVE NEAR-INFRARED SPECTROSCOPY IS NOT RELATED TO BRAIN TISSUE OXYGEN TENSION
Keywords:
near-infrared spectroscopy, brain oxygen tension, brain trauma, subarachnoid haemorrhage, brain deathAbstract
Actuality. Near-infrared spectroscopy (NIRS) has gained acceptance for cerebral monitoring, especially during cardiac surgery, though there are few data showing its validity. Aim. We therefore aimed to correlate invasive brain tissue oxygenmeasurements (PtiO2) with the corresponding NIRS-values (regional oxygen saturation, rSO2). We also studied whether NIRS was able to detect ischemic events, defined as a PtiO2- value of <15 mmHg. Materials and methods. Eleven patients were studied with invasive brain tissue oxygen monitoring and continuous-wave NIRS. PtiO2-correlation with corresponding NIRS-values was calculated. We found no correlation between PtiO2 — and NIRS-readings. Measurement of rSO2 was no better than flipping a coin in the detection of cerebral ischemia when a commonly agreed ischemic PtiO2 cut-off value of <15 mmHg was chosen. Results. Continuous-wave-NIRS (CW-NIRS) was unable to reliably detect ischemic cerebral episodes, defined as a PtiO2 value <15 mmHg. Displayed NIRSvalues did not correlate with invasively measured Pti2-values. Conclusion. CW-NIRS should not be used for the detection of cerebral ischemia.
References
Brain Trauma Foundation, Bratton S.L., Chestnut R.M., Ghajar J., McConnell Hammond F.F., Harris O.A., Hartl R., Manley G.T., Nemecek A., Newell D.W., Rosenthal G., Schouten J., Shutter L., Timmons SD., Ullman JS., Videtta W., Wilberger JE., Wright DW. Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neuro-trauma. 2007; 24Suppl 1: S37–44. doi: 10.1089/neu.2007.9990.
NCC 2014 Annual Meeting Highlights. http: //www.neurocriti calcare.org/news/2014-annualmeeting-highlights (2014). Accessed 05 July 2015.
Narotam P.K., Morrison J.F., Nathoo N. Brain tissue oxygen monitoring in traumatic brain injury and major trauma: outcome analysis of a brain tissue oxygen-directed therapy. J Neurosurg. 2009; 111 (4): 672–82. doi: 10.3171/2009.4.JNS081150.
Brawanski A., Faltermeier R., Rothoerl R.D., Woertgen C. Comparison of near-infrared spectroscopy and tissue p (O2) time series in patients after severe head injury and aneurysmal subarachnoid hemorrhage. J IntSocCereb Blood Flow Metab. 2002; 22 (5): 605-11. doi: 10.1097/00004647-200205000-00012.
Leal-Noval S.R., Cayuela A., Arellano-Orden V., Marin-Caballos A., Padilla V., Ferrandiz-Millon C., Corcia Y., Garcia-Alfaro C., Amaya-Villar R., Murillo-Cabezas F. Invasive and noninvasive assessment of cerebral oxygenation in patients with severe traumatic brain injury. Intensive Care Med. 2010; 36 (8): 1309-17. doi: 10.1007/s00134-010-1920-7.
Naidech A.M., Bendok B.R., Ault M.L., Bleck T.P. Monitoring with the Somanetics INVOS 5100C after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2008; 9 (3): 326-31. doi: 10.1007/s12028-008-9077-8.
Sorensen H., Rasmussen P., Siebenmann C., Zaar M., Hvidtfeldt M., Ogoh S., Sato K., Kohl-Bareis M., Secher NH., Lundby C. Extra-cerebral oxygenation influence on near-infraredspectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between INVOS-4100 and NIRO-200NX. Clin Physiol Funct Imaging. 2014 doi: 10.1111/cpf.12142.
Nielsen HB. Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery. Front Physiol. 2014; 5: 93. doi: 10. 3389/fphys. 2014.00093.
Integra Life Science Corp. Neuromonitoring Catalogue. http://www.integralife.com/eCatalogs/Neuro-monitoring/Neuromonitor ing%20Catalog%20NS897-10_09.pdf (2014). Accessed 16 Apr 2014.
NONIN Corp. EQUANOX TM Model 7600 regional oximeter system regional oximetry with EQUANOX Classic Plus Sensor. http://www.noninequanox.com/adult_system.aspx (2014). Accessed 16 Apr 2014.
Diaz-Arrastia R. Brain tissue oxygen monitoring in traumatic brain injury (TBI) (BOOST 2). http: //clinicaltrials. gov/ct2/show/ NCT00974259?term=boost?tbi&rank=1 (2014). Accessed 14 May 2014.
Rosenthal G., Hemphill J.C. 3rd., Sorani M., Martin C., Morabito D., Obrist W.D., Manley G.T. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med. 2008; 36 (6): 1917-24. doi: 10.1097/CCM. 0b013e3181743d77.
Foresight Clinical Corner. CAS Medical Systems, Inc. http: // www.casmed. com/foresightclinical-corner (2014). Accessed 14 April 2014.
Scheeren T.W., Bendjelid K. Journal of clinical monitoring and computing 2014 end of year summary: near infrared spectroscopy (NIRS). J ClinMonitComput. 2015; 29 (2): 217-20. doi: 10.1007/s10877-015-9689-4.
Buchner K, Meixensberger J., Dings J., Roosen K. Near-infrared spectroscopy—not useful to monitor cerebral oxygenation after severe brain injury. Zentralbl Neurochir. 2000; 61 (2): 69-73.
McLeod A.D., Igielman F., Elwell C., Cope M., Smith M. Measuring cerebral oxygenation during normobarichyperoxia: a comparison of tissue microprobes, near-infrared spectroscopy, and jugular venous oximetry in head injury. Anesth Analg. 2003; 97 (3): 851-6.
MacLeod D.B., Ikeda K., Keifer J., Moretti E., Ames W. Validation of the CAS adult cerebral oximeter during hypoxia in healthy volunteers. Anesth Analg. 2006; 102 (S2): S162.
Bidd H., Tan A., Green D. Using bispectral index and cerebral oximetry to guide hemodynamic therapy in high-risk surgical patients. Perioper Med. 2013; 2 (1): 11. doi: 10.1186/2047-0525-2-11.
Rubio A., Hakami L., Munch F., Tandler R., Harig F., Weyand M. Noninvasive control of adequate cerebral oxygenation during low-flow antegrade selective cerebral perfusion on adults and infants in the aortic arch surgery. J Card Surg. 2008; 23 (5): 474-9. doi: 10.1111/j.1540-8191.2008.00644.x.
Rosenthal G., Furmanov A., Itshayek E., Shoshan Y., Singh V. Assessment of a noninvasive cerebral oxygenation monitor in patients with severe traumatic brain injury. J Neurosurg. 2014; 120 (4): 901-7. doi: 10.3171/2013.12.JNS131089.
Macmillan C.S., Andrews P.J. Cerebrovenous oxygen saturation monitoring: practical considerations and clinical relevance. Intensive Care Med. 2000; 26 (8): 1028-36.
Gunn H.C.M.B., Lam A.M., Mayberg TS. Accuracy of continous jugular bulb venous oximetry during intracranial surgery. J NeurosurgAnesthesiol. 1995; 7 (3): 174-7.
Gupta A.K., Hutchinson P.J., Al-Rawi P., Gupta S., Swart M., Kirkpatrick P.J., Menon D.K., Datta A.K. Measuring brain tissue oxygenation compared with jugular venous oxygen saturation for monitoring cerebral oxygenation after traumatic brain injury. Anesth Analg. 1999; 88 (3): 549-53.
Jeong H., Jeong S., Lim H.J., Lee J., Yoo K.Y. Cerebral oxygen saturation measured by near-infrared spectroscopy and jugular venous bulb oxygen saturation during arthroscopic shoulder surgery in beach chair position under sevoflurane-nitrous oxide or propofol-remifentanil anesthesia. Anesthesiology. 2012; 116 (5): 1047-56. doi: 10.1097/ALN. 0b013e31825154d2.
Taussky P., O’Neal B., Daugherty WP., Luke S., Thorpe D., Pooley R.A., Evans C., Hanel R.A., Freeman W.D. Validation of frontal near-infrared spectroscopy as noninvasive bedside monitoring for regional cerebral blood flow in brain-injured patients. Neurosurg Focus. 2012; 32 (2): E2. doi: 10.3171/2011.12.FOCUS11280.
Ogoh S., Sato K., Okazaki K., Miyamoto T., Secher F., Sorensen H., Rasmussen P., Secher N.H. A decrease in spatially resolved near-infrared spectroscopy-determined frontal lobe tissue oxygenation by phenylephrine reflects reduced skin blood flow. Anesth Analg. 2014; 118 (4): 823-9. doi: 10.1213/ANE.0000000000000145.
Davie S.N., Grocott H.P. Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology. 2012; 116 (4): 834-40. doi: 10.1097/ALN.0b013e31824c00d7.
Palmer S., Bader M.K. Brain tissue oxygenation in brain death. Neurocrit Care. 2005; 2 (1): 17-22. doi: 10.1385/NCC: 2: 1: 017.
Gomersall CD., Joynt G.M., Gin T., Freebairn R.C., Stewart I.E. Failure of the INVOS 3100 cerebral oximeter to detect complete absence of cerebral blood flow. Crit Care Med. 1997; 25 (7): 1252-4.
Gatto R., Hoffman W., Mueller M., Flores A., Valyi-Nagy T., Charbel F.T. Frequency domain near-infrared spectroscopy technique in the assessment of brain oxygenation: a validation study in live subjects and cadavers. J Neurosci Methods. 2006; 157 (2): 274-7. doi: 10.1016/j.jneumeth.2006.04.013.
Lin P.Y., Roche-Labarbe N., Dehaes M., Carp S., Fenoglio A., Barbieri B., Hagan K., Grant PE., Franceschini MA. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants. J Vis Exp. 2013; 73: e4379. doi: 10.3791/4379.
Blohm M.E., Obrecht D., Hartwich J., Singer D. Effect of cerebral circulatory arrest on cerebral near-infrared spectroscopy in pediatric patients. PaediatrAnaesth. 2014; 24 (4): 393-9. doi: 10.1111/pan.12328.
Favilla C.G., Mesquita RC., Mullen M., Durduran T., Lu X., Kim M.N., Minkoff D.L., Kasner S.E., Greenberg J.H., Yodh A.G., Detre J.A. Optical bedside monitoring of cerebral blood flow in acute ischemic stroke patients during head-of-bed manipulation. Stroke J Cereb Circ. 2014; 45 (5): 1269-74. doi: 10.1161/STROKEAHA.113.004116